Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model

نویسندگان

  • Sydney Moser
  • Jongbin Lim
  • Mohammad Chegeni
  • JoLynne D. Wightman
  • Bruce R. Hamaker
  • Mario G. Ferruzzi
چکیده

While the potential of dietary phenolics to mitigate glycemic response has been proposed, the translation of these effects to phenolic rich foods such as 100% grape juice (GJ) remains unclear. Initial in vitro screening of GJ phenolic extracts from American grape varieties (V. labrusca; Niagara and Concord) suggested limited inhibitory capacity for amylase and α-glucosidase (6.2%-11.5% inhibition; p < 0.05). Separately, all GJ extracts (10-100 µM total phenolics) did reduce intestinal trans-epithelial transport of deuterated glucose (d7-glu) and fructose (d7-fru) by Caco-2 monolayers in a dose-dependent fashion, with 60 min d7-glu/d7-fru transport reduced 10%-38% by GJ extracts compared to control. To expand on these findings by assessing the ability of 100% GJ to modify starch digestion and glucose transport from a model starch-rich meal, 100% Niagara and Concord GJ samples were combined with a starch rich model meal (1:1 and 1:2 wt:wt) and glucose release and transport were assessed in a coupled in vitro digestion/Caco-2 cell model. Digestive release of glucose from the starch model meal was decreased when digested in the presence of GJs (5.9%-15% relative to sugar matched control). Furthermore, transport of d7-glu was reduced 10%-38% by digesta containing bioaccessible phenolics from Concord and Niagara GJ compared to control. These data suggest that phenolics present in 100% GJ may alter absorption of monosaccharides naturally present in 100% GJ and may potentially alter glycemic response if consumed with a starch rich meal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line

The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...

متن کامل

An Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line

The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...

متن کامل

ZnO nanoparticles affect intestinal function in an in vitro model.

Zinc oxide nanoparticles (ZnO NP) may be present in food packaging, which would put consumers at risk of NP ingestion. There is little information on the amount of ZnO NP that are present in food packaging and the effects of ZnO exposure on intestinal function. To estimate physiologically relevant ZnO exposures, foods that are naturally low in zinc (Zn), but are commonly packaged with ZnO NP, s...

متن کامل

In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene.

The ratio of cis and all-trans lycopene (LYC) in human and animal tissues exceeds that in foods. The basis for this difference remains unknown, although differences in their stability, transport, and metabolism have been suggested. Here, we systematically compared the digestive stability, efficiency of micellarization, and uptake and intracellular stability of cis and all-trans isomers of LYC a...

متن کامل

Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte

BACKGROUND The gastrointestinal tract is responsible for the assimilation of nutrients and plays a key role in the regulation of nutrient metabolism and energy balance. The molecular mechanisms by which intestinal sugar transport are regulated are controversial. Based on rodent studies, two models currently exist that involve activation of the sweet-taste receptor, T1R2/3: an indirect model, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016